Pneumopathies aiguës communautaires (PAC): Les actualités de l’année

Prof. Pierre Tatttevin
Maladies Infectieuses et Réanimation Médicale
INSERM U835
Hôpital Pontchaillou, CHU Rennes
Liens d’Intérêt 2013-2015

• Consultant ou membre d’un conseil scientifique
 Basiléa, The Medicines company, Janssen & Janssen, AstraZeneca, Astellas

• Orateur rémunéré
 AstraZeneca, Astellas, Gilead, MSD

• Subventions pour congrès
 MSD, Pfizer, Janssen & Janssen, AstraZeneca, Astellas
Actualités: ‘Ce qu’on a appris sur les PAC en 2015’

- Epidémiologie
- Prévention
- Stratégies thérapeutiques

NB. Corticoïdes/PAC & Grippe exclus
Middle East Respiratory Syndrome-Coronavirus (MERS-CoV)

- 2012-2015: 1611 cas => 575 décès (35%)
- Y penser si pneumopathie retour péninsule Arabique (< 14 j)
 - Surtout adultes (30-60 ans), hommes
 - Contacts hospitaliers (ou dromadaires)

Objectifs: Mettre ‘à jour’ l’épidémiologie des PAC hospitalisées
- Tests diagnostiques ‘modernes’ (PCR, virus)
- Impact de la vaccination systématique des enfants (PCQ conjugué)

Méthodes:
- 5 Hôpitaux US (Chicago, Nashville), 2010-2012
- Recrutement actif (18 h/j, 7/7) des PAC hospitalisées
- Tests sang, urine, ECBC, naso/oropharynx, PCR, sérologies (J0, S3-S10)
- Contrôles (hospitalisés sans fièvre ni signe respiratoire)
1. L’adulte

Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults

S. Jain, W.H. Self, R.G. Wunderink, S. Fakhran, R. Balk, A.M. Bramley, C. Reed,

- **Critères inclusions:**
 1. Signe(s) infectieux +
 2. Signe(s) respiratoire(s) aigu(s) +
 3. Anomalies radiologiques confirmées par radiologue thoracique

- **Critères exclusions:**
 - Hospitalisation récente
 - Long séjour
 - Immunodéprimés lourds (VIH CD4 < 200, greffe < 3 mois, neutropénie)

Table 1. Characteristics of Adults with Community-Acquired Pneumonia Requiring Hospitalization.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Adults with Radiographic Evidence of Pneumonia (N = 2320)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group — no. (%)</td>
<td></td>
</tr>
<tr>
<td>18–49 yr</td>
<td>701 (30)</td>
</tr>
<tr>
<td>50–64 yr</td>
<td>787 (34)</td>
</tr>
<tr>
<td>65–79 yr</td>
<td>517 (22)</td>
</tr>
<tr>
<td>≥80 yr</td>
<td>315 (14)</td>
</tr>
<tr>
<td>Any underlying condition — no. (%)‡</td>
<td>1817 (78)</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>968 (42)</td>
</tr>
<tr>
<td>Chronic heart disease</td>
<td>810 (35)</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>685 (30)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>597 (26)</td>
</tr>
<tr>
<td>Status regarding receipt of vaccine or treatment — no./total no. (%)§</td>
<td></td>
</tr>
<tr>
<td>Seasonal influenza vaccination</td>
<td>448/1898 (24)</td>
</tr>
<tr>
<td>Pneumococcal vaccination in adults ≥65 yr of age</td>
<td>308/704 (44)</td>
</tr>
<tr>
<td>Radiographic finding — no. (%)¶</td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>1447 (62)</td>
</tr>
<tr>
<td>Alveolar or interstitial infiltrate</td>
<td>920 (40)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>714 (31)</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of Adults with Community-Acquired Pneumonia Requiring Hospitalization.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Adults with Radiographic Evidence of Pneumonia (N = 2320)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group — no. (%)</td>
<td></td>
</tr>
<tr>
<td>18–49 yr</td>
<td>701 (30)</td>
</tr>
<tr>
<td>50–64 yr</td>
<td>787 (34)</td>
</tr>
<tr>
<td>65–79 yr</td>
<td>517 (22)</td>
</tr>
<tr>
<td>≥80 yr</td>
<td>315 (14)</td>
</tr>
<tr>
<td>Any underlying condition — no. (%)‡</td>
<td></td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>968 (42)</td>
</tr>
<tr>
<td>Chronic heart disease</td>
<td>810 (35)</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>685 (30)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>597 (26)</td>
</tr>
<tr>
<td>Status regarding receipt of vaccine or treatment — no./total no. (%)§</td>
<td></td>
</tr>
<tr>
<td>Seasonal influenza vaccination</td>
<td>448/1898 (24)</td>
</tr>
<tr>
<td>Pneumococcal vaccination in adults ≥65 yr of age</td>
<td>308/704 (44)</td>
</tr>
<tr>
<td>Radiographic finding — no. (%)¶</td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>1447 (62)</td>
</tr>
<tr>
<td>Alveolar or interstitial infiltrate</td>
<td>920 (40)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>714 (31)</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of Adults with Community-Acquired Pneumonia Requiring Hospitalization.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Adults with Radiographic Evidence of Pneumonia (N = 2320)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group — no. (%)</td>
<td></td>
</tr>
<tr>
<td>18–49 yr</td>
<td>701 (30)</td>
</tr>
<tr>
<td>50–64 yr</td>
<td>787 (34)</td>
</tr>
<tr>
<td>65–79 yr</td>
<td>517 (22)</td>
</tr>
<tr>
<td>≥80 yr</td>
<td>315 (14)</td>
</tr>
<tr>
<td>Any underlying condition — no. (%)‡</td>
<td></td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>968 (42)</td>
</tr>
<tr>
<td>Chronic heart disease</td>
<td>810 (35)</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>685 (30)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>597 (26)</td>
</tr>
<tr>
<td>Status regarding receipt of vaccine or treatment — no./total no. (%)§</td>
<td></td>
</tr>
<tr>
<td>Seasonal influenza vaccination</td>
<td>448/1898 (24)</td>
</tr>
<tr>
<td>Pneumococcal vaccination in adults ≥65 yr of age</td>
<td>308/704 (44)</td>
</tr>
<tr>
<td>Radiographic finding — no. (%)¶</td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>1447 (62)</td>
</tr>
<tr>
<td>Alveolar or interstitial infiltrate</td>
<td>920 (40)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>714 (31)</td>
</tr>
</tbody>
</table>
Epidémiologie des PAC

1. L’adulte

Specific Pathogens Detected

- Patients with a Positive Result (%)
- Viral pathogen only (22%)
- Viral-viral co-detection (2%)
- Bacterial-viral co-detection (3%)
- Bacterial pathogen only (11%)
- Fungal or mycobacterial detection (1%)

No pathogen detected (62%)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Patients with Positive Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human rhinovirus</td>
<td>194</td>
</tr>
<tr>
<td>Influenza A or B</td>
<td>132</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>115</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>88</td>
</tr>
<tr>
<td>Respiratory synciyal virus</td>
<td>68</td>
</tr>
<tr>
<td>Parainfluenza virus</td>
<td>67</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>53</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>43</td>
</tr>
<tr>
<td>S. aureus</td>
<td>37</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>32</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>32</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>31</td>
</tr>
<tr>
<td>Other</td>
<td>74</td>
</tr>
</tbody>
</table>

Épidémiologie des PAC

1. L’adulte

Graphique: Distribution des pathogènes spécifiques détectés.

- **Patients with a Positive Result (%):**
 - Copathogen
 - Single pathogen

Pathogènes détectés:
- Virus pathogen only (22%)
- Viral-viral co-detection (2%)
- Bacterial-viral co-detection (3%)
- Bacterial pathogen only (11%)
- Fungal or mycobacterial detection (1%)

Pathogènes spécifiques détectés:
- Human rhinovirus
- Influenza A or B
- *S. pneumoniae*
- Human metapneumovirus
- Respiratory syncytial virus
- Parainfluenza virus
- Coronavirus
- *Mycoplasma pneumoniae*
- *S. aureus*
- Adenovirus
- *Legionella pneumophila*
- Enterobacteriaceae
- Other

Epidémiologie des PAC

1. L’adulte

Specific Pathogens Detected

- Patients with a Positive Result (%)
 - 194
 - 132
 - 115
 - 88
 - 68
 - 67
 - 53
 - 43
 - 37
 - 32
 - 32
 - 31
 - 74

- Copathogen
- Single pathogen

- Viral pathogen only (22%)
- Viral–viral co-detection (2%)
- Bacterial–viral co-detection (3%)
- Bacterial pathogen only (11%)
- Fungal or mycobacterial detection (1%)

- Human rhinovirus
- Influenza A or B
- S. pneumoniae
- Human metapneumovirus
- Respiratory syncytial virus
- Parainfluenza virus
- Coronavirus
- Mycoplasma pneumoniae
- S. aureus
- Adenovirus
- Legionella pneumophila
- Enterobacteriaceae
- Other

Pathogens Detected, According to Month and Year

All causes of pneumonia

- Human rhinovirus
- Influenza A or B
- Human metapneumovirus
- Respiratory syncytial virus
- S. pneumoniae
- S. aureus
Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults
S. Jain, W.H. Self, R.G. Wunderink, S. Fakhran, R. Balk, A.M. Bramley, C. Reed,

• **Et les PAC graves ?** => 3 pathogènes sur-représentés
 – Pneumocoque (8%)
 – *S. aureus* (5%)
 – Entérobactéries (3%)

• **Conclusions: la vraie épidémiologie des PAC (USA, 2010-12)**
 – Rhinovirus = pathogène n°1 (tout âge), **27% des PAC documentées !**
 – Rarement retrouvé chez les contrôles (2%)
 – Pneumocoque ‘minoritaire’ (5% des PAC de l’adulte)
Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children

Seema Jain, M.D., Derek J. Williams, M.D., M.P.H., Sandra R. Arnold, M.D.,

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Children with Radiographic Evidence of Pneumonia (N=2358)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group — no. (%)</td>
<td></td>
</tr>
<tr>
<td><2 yr</td>
<td>1055 (45)</td>
</tr>
<tr>
<td>2–4 yr</td>
<td>595 (25)</td>
</tr>
<tr>
<td>5–9 yr</td>
<td>422 (18)</td>
</tr>
<tr>
<td>10–17 yr</td>
<td>286 (12)</td>
</tr>
<tr>
<td>Radiographic finding — no. (%) †</td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>1376 (58)</td>
</tr>
<tr>
<td>Alveolar or interstitial infiltrate</td>
<td>1195 (51)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>314 (13)</td>
</tr>
<tr>
<td>Intensive care unit admission — no. (%)</td>
<td>497 (21)</td>
</tr>
<tr>
<td>Invasive mechanical ventilation — no. (%)</td>
<td>166 (7)</td>
</tr>
<tr>
<td>Death in the hospital — no. (%)</td>
<td>3 (<1)</td>
</tr>
</tbody>
</table>
Epidémiologie des PAC

2. L’enfant

Chaque barre représenterait la proportion de patients testés et ayant un résultat positif pour le pathogène mentionné.

Pathogen Detected

- **RSV**: 622 patients
- **HRV**: 606 patients
- **HMPV**: 285 patients
- **AdV**: 248 patients
- **M. pneumoniae**: 178 patients
- **P1V**: 151 patients
- **Flu**: 149 patients
- **CoV**: 110 patients
- **S. pneumoniae**: 79 patients
- **Other**: 81 patients

Epidémiologie des PAC 2. L’enfant

Epidémiologie des PAC 2. L’enfant

NB: Couverture vaccinale PCQ conjugué 3 doses (19 Mo) = 87%
Epidémiologie des PAC

2. L’enfant

2. L’enfant

Epidémiologie des PAC

Graphique montrant l'épidémiologie des PAC, avec des ondes de fréquences élevées de RSV, HMPV et Adenovirus.
Prévention des PAC => Vaccin PCQ conjugué après 65 ans

- **Rationnel**
 - Vaccin PCQ conjugué + efficace que le PS chez enfants et IDP
 - Sujet âgé = FDR d’infection invasive à PCQ / IDP ⇔ âge

- **Méthodes**
 - Essai randomisé, double aveugle, PCV13 vs. placebo, n > 82 000
 - Âge > 65 ans, suivi moyen 4 ans (2008-2013)
 - Test Ag U PCQ avec diagnostic de sérotype
Prévention des PAC => Vaccin PCQ conjugué après 65 ans

<table>
<thead>
<tr>
<th>End Point and Analysis</th>
<th>PCV13 (N=42,240)</th>
<th>Placebo (N=42,256)</th>
<th>Percent Vaccine Efficacy (CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First episode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection with vaccine-type strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed community-acquired pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>139</td>
<td>49</td>
<td>90</td>
<td>45.6 (21.8 to 62.5)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>172</td>
<td>66</td>
<td>106</td>
<td>37.7 (14.3 to 55.1)</td>
</tr>
<tr>
<td>Confirmed nonbacteremic and noninvasive community-acquired pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>93</td>
<td>33</td>
<td>60</td>
<td>45.0 (14.2 to 65.3)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>116</td>
<td>43</td>
<td>73</td>
<td>41.1 (12.7 to 60.7)</td>
</tr>
<tr>
<td>Invasive pneumococcal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>35</td>
<td>7</td>
<td>28</td>
<td>75.0 (41.4 to 90.8)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>41</td>
<td>8</td>
<td>33</td>
<td>75.8 (46.5 to 90.3)</td>
</tr>
</tbody>
</table>

Prévention des PAC => Vaccin PCQ conjugué après 65 ans

<table>
<thead>
<tr>
<th>End Point and Analysis</th>
<th>PCV13 (N=42,240)</th>
<th>Placebo (N=42,256)</th>
<th>Percent Vaccine Efficacy (CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First episode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection with vaccine-type strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed community-acquired pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>139</td>
<td>49</td>
<td>90</td>
<td>45.6 (21.8 to 62.5)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>172</td>
<td>66</td>
<td>106</td>
<td>37.7 (14.3 to 55.1)</td>
</tr>
<tr>
<td>Confirmed nonbacteremic and noninvasive community-acquired pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>93</td>
<td>33</td>
<td>60</td>
<td>45.0 (14.2 to 65.3)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>116</td>
<td>43</td>
<td>73</td>
<td>41.1 (12.7 to 60.7)</td>
</tr>
<tr>
<td>Invasive pneumococcal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-protocol analysis</td>
<td>35</td>
<td>7</td>
<td>28</td>
<td>75.0 (41.4 to 90.8)</td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>41</td>
<td>8</td>
<td>33</td>
<td>75.8 (46.5 to 90.3)</td>
</tr>
</tbody>
</table>

Prévention des PAC => Vaccin PCQ conjugué après 65 ans

<table>
<thead>
<tr>
<th>End Point and Analysis</th>
<th>PCV13 (N = 42,240)</th>
<th>Placebo (N = 42,256)</th>
<th>Percent Vaccine Efficacy (CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-acquired pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified intention-to-treat analysis</td>
<td>1534</td>
<td>747</td>
<td>787</td>
<td>5.1 (-5.1 to 14.2)</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From confirmed vaccine-type pneumococcal community-acquired pneumonia or vaccine-type invasive pneumococcal disease</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0 (-1279.6 to 92.8)</td>
</tr>
<tr>
<td>From confirmed pneumococcal community-acquired pneumonia or invasive pneumococcal disease</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>14.3 (-197.9 to 76.2)</td>
</tr>
</tbody>
</table>

Bons résultats
- **Efficacité vaccinale** sur les pneumonies à PCQ de sérotype vaccinal = 46% (22-62%) (P<0,001)
- **Efficacité vaccinale** sur les infections invasives à PCQ de sérotype vaccinal = 75% (41-91%) (P<0,001)
- Pas de réduction d’efficacité jusqu’à 4 ans
- Tolérance OK (n=42 240)

Moins bons
- Pas d’impact sur l’incidence des PAC, ni sur le décès
- Il faut vacciner 1030 sujets pour éviter une PAC en 4 ans, et 2050 sujets pour éviter une infection invasive à PCQ
Prévention des PAC => Vaccin PCQ conjugué après 65 ans

• L’efficacité du PCV13
 – Nourrissons tous vaccinés aux Pays-Bas depuis 2006
 – Effet ‘troupeau’
 – Baisse d’incidence des PAC à PCQ de sérotype vaccinal

• Polémique sur son prix
 – 55 € en France
 – 150 USD aux USA
 – 10 USD les 3 doses dans les PED

Antibiothérapie des PAC

- **Objectifs:** Comparaison de 3 ‘stratégies’ d’ATB empirique
 - Bêta-lactamine
 - Bêta-lactamine + macrolide
 - Fluoroquinolone

- **Méthodes:** Essai ‘pragmatique’
 - Adultes, PAC => hospitalisation (pas en réanimation)
 - Critère principal = mortalité J90
 - Etude non-infériorité (marge IC90 < 3%)

Antibiothérapie des PAC

- Randomisation en cluster (à l’échelle de l’hôpital) avec cross over

• Résultats:
 – PCQ (16%), *H. influenzae* (7%), atypiques (2%)
Antibiothérapie des PAC

• Résultats:
 – PCQ (16%), *H. influenzae* (7%), atypiques (2%)

Table 2. Baseline Characteristics of Patients in the Intention-to-Treat Population.*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Beta-Lactam (N=656)</th>
<th>Beta-Lactam–Macrolide (N=739)</th>
<th>Fluoroquinolone (N=888)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (interquartile range) — yr</td>
<td>70 (60–79)</td>
<td>70 (59–80)</td>
<td>71 (59–79)</td>
</tr>
<tr>
<td>Male sex — no. (%)</td>
<td>381 (58.1)</td>
<td>431 (58.3)</td>
<td>505 (56.9)</td>
</tr>
<tr>
<td>Median duration of symptoms (interquartile range) — days</td>
<td>3 (1–7)</td>
<td>3 (1–7)</td>
<td>3 (1–7)</td>
</tr>
<tr>
<td>Received antibiotics before admission — no./total no. (%)</td>
<td>219/637 (34.4)</td>
<td>227/721 (31.5)</td>
<td>303/873 (34.7)</td>
</tr>
<tr>
<td>Current smoker — no./total no. (%)</td>
<td>109/627 (17.4)</td>
<td>154/723 (21.3)</td>
<td>196/872 (22.5)</td>
</tr>
<tr>
<td>Past smoker — no./total no. (%)</td>
<td>379/627 (60.4)</td>
<td>398/723 (55.0)</td>
<td>490/872 (56.2)</td>
</tr>
<tr>
<td>Received influenza vaccination — no./total no. (%)</td>
<td>453/624 (72.6)</td>
<td>466/700 (66.6)</td>
<td>572/847 (67.5)</td>
</tr>
<tr>
<td>Received pneumococcal vaccination — no./total no. (%)</td>
<td>16/594 (2.7)</td>
<td>18/671 (2.7)</td>
<td>13/822 (1.6)</td>
</tr>
<tr>
<td>PPSV23</td>
<td>19/656 (2.9)</td>
<td>7/739 (0.9)</td>
<td>10/888 (1.1)</td>
</tr>
<tr>
<td>PCV13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respect des consignes de randomisation

- **BL:**
 - amox/clav 48%
 - amox 30%
 - ceftriaxone 20%

- **Macrolides:**
 - érythro 35%
 - clarithro 30%
 - azithro 25%

- **FQ:**
 - moxiflo 60%
 - lévoflo 25%
Antibiothérapie des PAC

• Résultats:
 – Non-infériorité démontrée de la monothérapie BL

Antibiothérapie des PAC

• Résultats:
 – Analyses de sensibilité
Antibiothérapie des PAC

• Résultats:

 – Selon sévérité

<table>
<thead>
<tr>
<th>Level of Risk</th>
<th>Beta-Lactam</th>
<th>Beta-Lactam Macrolide</th>
<th>Fluoroquinolone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adherence</td>
<td>Mortality</td>
<td>Adherence</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>no./total no. (%)</td>
<td>%</td>
</tr>
<tr>
<td>CURB-65 score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>72.5</td>
<td>45/562 (8.0)</td>
<td>73.4</td>
</tr>
<tr>
<td>>2</td>
<td>64.1</td>
<td>14/92 (15.2)</td>
<td>69.2</td>
</tr>
<tr>
<td>PSI risk class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I or II</td>
<td>65.1</td>
<td>3/194 (1.5)</td>
<td>73.6</td>
</tr>
<tr>
<td>III or IV</td>
<td>74.5</td>
<td>41/415 (9.9)</td>
<td>73.6</td>
</tr>
<tr>
<td>V</td>
<td>68.9</td>
<td>15/45 (33.3)</td>
<td>55.9</td>
</tr>
</tbody>
</table>

Table 1. Antibiotic Adherence and 90-Day Mortality for CURB-65 and PSI Risk Strata.*
• Conclusions

 – Pour les adultes avec PAC nécessitant une hospitalisation (hors réa)
 – La monothérapie par BL fait au moins aussi bien que BL + M, ou FQ ‘anti-pneumococciques’
 – Y compris formes graves (PSI V ou CURB-65 > 2)
Actualités PAC 2015: Conclusions

• Epidémiologie
 – **Rhinovirus**: net 1er chez l’adulte, 1er ex-aequo (avec VRS) chez l’enfant
 – Le **PCQ en perte de vitesse**: 5% des PAC de l’adulte (enfant 3%)
 – **M. pneumoniae**: 8% (enfant), 2% (adulte)
 – **C. pneumoniae**: une blague ?

• Vaccin conjugué PCV13 c/o âge > 65 ans
 – **Efficacité vaccinale 46%** sur PCQ sérotypes vaccinaux (**13% des PAC**)

• Traitement PAC adultes hospitalisés hors réa
 – Monothérapie amox ou amox/clav
• Merci de votre attention !